Language in 3D

Multi-way factorization algorithms to tackle semantics

Tim Van de Cruys

University of Cambridge

NLIP seminar Friday 3 June, 2011

Distributional similarity

Distributional similarity models are able to infer (lexical) semantics from text:

- semantically similar words (syntactic context, small window)
 - train: bus, ferry, boat, coach, car, plane, vehicle, taxi, ship, truck, . . .
 - **doctor**: nurse, GP, physician, practitioner, midwife, dentist, surgeon, . . .

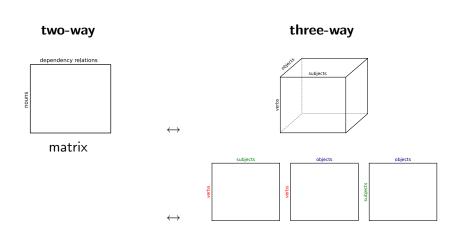
Distributional similarity

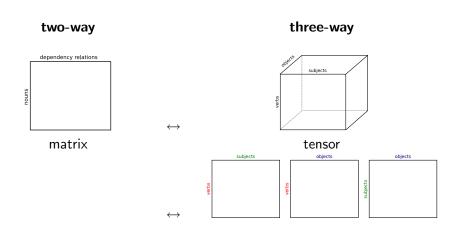
Distributional similarity models are able to infer (lexical) semantics from text:

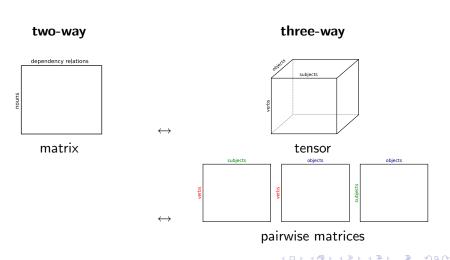
- topically related words (large window)
 - train: bus, journey, railway, station, passenger, ride, stop, taxi, fare, . . .
 - **doctor**: medication, GP, surgery, hospital, sufferer, clinic, nurse, treatment, illness, . . .

- suitable for two-way problems
 - words × documents
 - nouns × dependency relations
- not suitable for *n*-way problems
 - ullet words imes documents imes authors
 - verbs × subjects × direct objects

- suitable for two-way problems
 - words × documents
 - nouns × dependency relations
- not suitable for *n*-way problems → ?
 - ullet words imes documents imes authors
 - verbs × subjects × direct objects







Factorization

Two reasons for performing dimensionality reduction:

- Intractable computations
 - When number of elements and number of features is too large, similarity computations may become intractable
 - reduction of the number of features makes computation tractable again
- Generalization capacity
 - the dimensionality reduction is able to describe the data better, or is able to capture intrinsic semantic features
 - dimensionality reduction is able to improve the results (counter data sparseness and noise)

Different flavours

- Principal component analysis
- Latent semantic analysis (singular value decomposition)
- Probabilistic latent semantic analysis
- Topic models latent dirichlet allocation
- Non-negative matrix factorization

Non-negative matrix factorization

 Given a non-negative matrix V, find non-negative matrix factors W and H such that:

$$V_{n\times m}\approx W_{n\times r}H_{r\times m} \tag{1}$$

- Choosing $r \ll n, m$ reduces data
- Constraint on factorization: all values in three matrices need to be non-negative values (≥ 0)
- Constraint brings about a parts-based representation: only additive, no subtractive relations are allowed

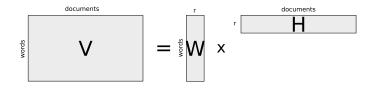
Non-negative matrix factorization

- Different kinds of NMF's that minimize different cost functions:
 - Square of Euclidean distance (L1-norm)
 - Kullback-Leibler Divergence (L2-norm)
 hetter suited for language phonomen
- \Rightarrow better suited for language phenomena
- To find NMF is to minimize D(V||WH) with respect to W and H, subject to the constraints $W, H \ge 0$
- This can be done with *update rules*

$$\mathbf{H}_{a\mu} \leftarrow \mathbf{H}_{a\mu} \frac{\sum_{i} \mathbf{W}_{ia} \frac{\mathbf{V}_{i\mu}}{(\mathbf{WH})_{i\mu}}}{\sum_{k} \mathbf{W}_{ka}} \quad \mathbf{W}_{ia} \leftarrow \mathbf{W}_{ia} \frac{\sum_{\mu} \mathbf{H}_{a\mu} \frac{\mathbf{V}_{i\mu}}{(\mathbf{WH})_{i\mu}}}{\sum_{\nu} \mathbf{H}_{a\nu}} \quad (2)$$

 these update rules converge to a local optimum in the minimization of KL divergence

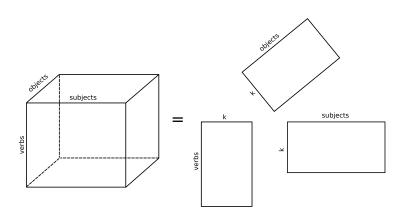
Graphical Representation



Technique

- Idea similar to non-negative matrix factorization
- Calculations are different
- $\min_{x_i \in \mathbb{R}^{D1}_{\geq 0}, y_i \in \mathbb{R}^{D2}_{\geq 0}, z_i \in \mathbb{R}^{D3}_{\geq 0}} \| T \sum_{i=1}^k x_i \circ y_i \circ z_i \|_F^2$

Graphical representation



Introduction 1/2

- Standard selectional preference models: two-way co-occurrences
- Keeping track of single relationships
- But: two-way selectional preference models are not sufficiently rich
- Compare:
 - The skyscraper is playing coffee.
 - The turntable is playing the piano.

Introduction 2/2

- The skyscraper is playing coffee.
 - (play, su, scyscraper) ↓
 - (play, obj, coffee) ↓
- The turntable is playing the piano.
 - (play, su, turntable) ↑
 - (play, obj, piano) ↑
 - (play, su, turntable, obj, piano) ↓

Methodology

- Three-way extraction of selectional preferences
- Approach applied to Dutch, using TWENTE NIEUWS CORPUS (500M words of newspaper texts)
- parsed with Dutch dependency parser ALPINO
- three-way co-occurrence of verbs with subjects and direct objects extracted
- adapted with extension of pointwise mutual information
- ullet Resulting tensor $1 \mbox{K}$ verbs $imes 10 \mbox{K}$ subjects $imes 10 \mbox{K}$ direct objects
- reduction to k dimensions (k = 50, 100, 300)

Examples: police action

subjects	sus	verbs	Vs	objects	objs
politie 'police'	.99	houd_aan 'arrest'	.64	verdachte 'suspect'	.16
agent 'policeman'	.07	arresteer 'arrest'	.63	man 'man'	.16
autoriteit 'authority'	.05	<i>pak_op</i> 'run in'	.41	betoger 'demonstrator'	.14
Justitie 'Justice'	.05	schiet_dood 'shoot'	.08	relschopper 'rioter'	.13
recherche 'detective force'	.04	verdenk 'suspect'	.07	raddraaier 'instigator'	.13
marechaussee 'military police'	.04	tref_aan 'find'	.06	overvaller 'raider'	.13
<i>justitie</i> 'justice'	.04	achterhaal 'overtake'	.05	Roemeen 'Romanian'	.13
arrestatieteam 'special squad'	.03	verwijder 'remove'	.05	actievoerder 'campaigner'	.13
leger 'army'	.03	zoek 'search'	.04	hooligan 'hooligan'	.13
douane 'customs'	.02	spoor_op 'track'	.03	Algerijn 'Algerian'	.13

Examples: legislation

subjects	sus	verbs	Vs	objects	objs
meerderheid 'majority'	.33	steun 'support'	.83	motie 'motion'	.63
VVD	.28	dien_in 'submit'	.44	voorstel 'proposal'	.53
D66	.25	neem_aan 'pass'	.23	<i>plan</i> 'plan'	.28
Kamermeerderheid	.25	wijs_af 'reject'	.17	wetsvoorstel 'bill'	.19
fractie 'party'	.24	verwerp 'reject'	.14	hem 'him'	.18
PvdA	.23	vind 'think'	.08	kabinet 'cabinet'	.16
CDA	.23	aanvaard 'accepts'	.05	minister 'minister'	.16
Tweede Kamer	.21	behandel 'treat'	.05	beleid 'policy'	.13
partij 'party'	.20	doe 'do'	.04	kandidatuur 'candidature'	.11
Kamer 'Chamber'	.20	keur_goed 'pass'	.03	amendement 'amendment'	.09

Examples: exhibition

subjects	sus	verbs	Vs	objects	objs
tentoonstelling 'exhibition'	.50	toon 'display'	.72	schilderij 'painting'	.47
expositie 'exposition'	.49	omvat 'cover'	.63	werk 'work'	.46
galerie 'gallery'	.36	bevat 'contain'	.18	tekening 'drawing'	.36
collectie 'collection'	.29	presenteer 'present'	.17	foto 'picture'	.33
museum 'museum'	.27	laat 'let'	.07	sculptuur 'sculpture'	.25
oeuvre 'oeuvre'	.22	koop 'buy'	.07	aquarel 'aquarelle'	.20
Kunsthal	.19	bezit 'own'	.06	object 'object'	.19
kunstenaar 'artist'	.15	zie 'see'	.05	beeld 'statue'	.12
dat 'that'	.12	koop_aan 'acquire'	.05	overzicht 'overview'	.12
<i>hij</i> 'he'	.10	in huis heb 'own'	.04	portret 'portrait'	.11

Examples: quality count

- 44 dimensions contain similar, framelike semantics
- 43 dimensions contain less clear-cut semantics
 - single verbs account for one dimension
 - verb senses are mixed up
- 13 dimensions based on syntax rather than semantics
 - fixed expressions
 - pronomina

Evaluation: methodology

 pseudo-disambiguation task to test generalization capacity (standard automatic evaluation for selectional preferences)

5	V	0	s'	o'
jongere 'youngster' werkgever 'employer' directeur 'manager'	drink 'drink' riskeer 'risk' zwaai 'sway'	bier 'beer' boete 'fine' scepter 'sceptre'	coalitie 'coalition' doel 'goal' informateur 'informer'	aandeel 'share' kopzorg 'worry' vodka 'wodka'

• 10-fold cross validation (± 300,000 co-occurrences)

Evaluation: models

- Evaluation of 4 different models
- 2 matrix models
 - $\rightarrow 1$ K verbs \times (10K subjects + 10K direct objects)
 - singular value decomposition (\mathbb{R})
 - ullet non-negative matrix factorization $(\mathbb{R}_{\geq 0})$
- 2 tensor models
 - \rightarrow 1K verbs \times 10K subjects \times 10K direct objects
 - parallel factor analysis (\mathbb{R})
 - non-negative tensor factorization $(\mathbb{R}_{\geq 0})$

Evaluation: results

		dimensions	
	50 (%)	100 (%)	300 (%)
SVD	69.60 ± 0.41	62.84 ± 1.30	45.22 ± 1.01
NMF	81.79 ± 0.15	78.83 ± 0.40	75.74 ± 0.63
PARAFAC	85.57 ± 0.25	83.58 ± 0.59	80.12 ± 0.76
NTF	89.52 ± 0.18	$\textbf{90.43}\pm0.14$	90.89 ± 0.16

What if tensor factorization is infeasible?

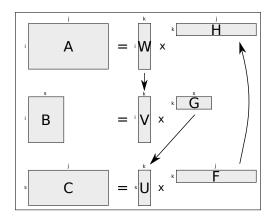
• Significant space requirements, not feasible for large dataset

What if tensor factorization is infeasible?

- Significant space requirements, not feasible for large dataset
- Solution: use pairwise co-occurrences and combine matrices in factorization

- ◆ Apply NMF to matrices, but interleave the process
- Result of former update step is used to initialize the next one

Graphical Representation



• Problem: ambiguity

BAR

- Problem: ambiguity
- BAR

- Problem: ambiguity
- BAR

- Problem: ambiguity
- BAR

- Problem: ambiguity
- BAR

- Problem: ambiguity
- BAR

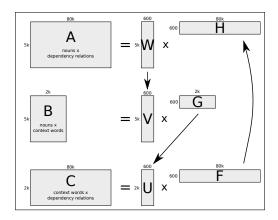
- **Problem**: ambiguity
- BAR.

 Main research question: can 'topical' similarity and tight, synonym-like similarity be combined to compute meaning of word in a particular context?

Methodology

- Goal: classification of nouns according to both window-based context (with large window) and syntactic context
- → Construct three matrices capturing co-occurrence frequencies for each mode
 - nouns cross-classified by dependency relations
 - nouns cross-classified by (bag of words) context words
 - dependency relations cross-classified by context words
- ◆ Apply NMF to matrices, but interleave the process
- Result of former factorization is used to initialize factorization of the next one

Graphical Representation



Word meaning in context

- NMF can be interpreted probabilistically
 - Matrix $\mathbf{W} \rightarrow p(w_i|\mathbf{z})$
 - Matrix $\mathbf{H} \rightarrow p(\mathbf{z}|d_j), p(\mathbf{d}|\mathbf{z})$
 - Matrix $\mathbf{G} \to p(\mathbf{z}|c_i)$
- $p(\mathbf{z}|C) = \frac{\sum_{c_i \in C} p(\mathbf{z}|c_i)}{|C|}$ the probability distribution over latent factors given the context ('semantic fingerprint')
- $p(\mathbf{d}|C) = p(\mathbf{z}|C)p(\mathbf{d}|\mathbf{z})$ probability distribution over dependency features given the context
- $p(\mathbf{d}|w_i, C) = p(\mathbf{d}|w_i) \cdot p(\mathbf{d}|C)$ weight each dependency feature according to the importance given the context

Example

- **①** Jack is listening to a **record**. $\rightarrow C_1 = \{listen_{prep(to)}^{-1}\}$
 - $p(\mathbf{z}|C_1) \rightarrow p(\mathbf{d}|C_1) \rightarrow p(\mathbf{d}|w_i, C_1)$
 - $record_N$, C_1 : album, song, recording, track, cd
- **②** Jill updated the **record**. $\rightarrow C_2 = \{update_{obj}^{-1}\}$
 - $p(\mathbf{z}|C_2) \rightarrow p(\mathbf{d}|C_2) \rightarrow p(\mathbf{d}|w_i, C_2)$
 - record_N, C_2 : file, datum, document, database, list

Implementational details

- method applied to English and French
 - UKWaC corpus, parsed with MaltParser
 - French Wikipedia, parsed with FRMG
- one model per pos (noun,adjective,verb,adverb)
- NMF model: K = 600, 100 iterations
- interleaved NMF algorithm implemented in Matlab, preprocessing and vector computation in Python.

Example dimension 44

nouns	context words	dependency relations
building/NN	building/NN	dobj-1#redevelop/VB
factory/NN	construction/NN	conj_and/cc#warehouse/NN
center/NN	build/VB	prep_of/in-1#redevelopment/NN
refurbishment/NN	station/NN	prep_of/in-1#refurbishment/NN
warehouse/NN	store/NN	conj_and/cc#dock/NN
store/NN	open/VB	prep_by/in-1#open/VB
station/NN	center/NN	nn#refurbishment/NN
construction/NN	industrial/JJ	prep_of/in-1#ft/NN
complex/NN	Street/NNP	amod#multi-storey/JJ
headquarters/NN	close/VB	prep_of/in-1#opening/NN

Example dimension 89

nouns	context words	dependency relations
virus/NN	security/NN	amod#malicious/JJ
software/NN	Microsoft/NNP	nn-1#vulnerability/NN
security/NN	Internet/NNP	conj_and/cc#worm/NN
firewall/NN	Windows/NNP	nn-1#worm/NN
spam/NN	computer/NN	nn-1#flaw/NN
Security/NNP	network/NN	nn#antivirus/NN
vulnerability/NN	attack/NN	nn#IM/NNP
system/NN	software/NN	prep_of/in#worm/NN
Microsoft/NNP	protect/VB	nn#Trojan/NNP
computer/NN	protection/NN	conj_and/cc#virus/NN

Example dimension 316

nouns	context words	dependency relations
virus/NN	brain/NN	dobj-1#infect/VB
disease/NN	animal/NN	nsubjpass-1#infect/VB
bacterium/NN	disease/NN	rcmod#infect/VB
infection/NN	human /JJ	nsubj-1#infect/VB
human/NN	blood/NN	prep_with/in-1#infect/VB
rat/NN	cell/NN	conj_and/cc#rat/NN
cell/NN	cancer/NN	prep_of/in#virus/NN
animal/NN	skin/NN	amod#infected/JJ
mouse/NN	scientist/NN	prep_of/in#flu/NN
cancer/NN	drug/NN	nn#monkey/NN

Evaluation

- Evaluated with SEMEVAL 2007 lexical substitution task
- find appropriate substitutes in context
- 200 target words (50 for each pos), 10 sentences each
- Paraphrase ranking: rank possible candidates, standard evaluation for unsupervised methods
 - Kendall's τ_b ranking coefficient
 - Generalized average precision
- Paraphrase induction: find candidates from scratch, not carried out before for unsupervised methods
 - Recall
 - Precision out-of-ten

Paraphrase ranking

model	$ au_{b}$	GAP
random	-0.61	29.98
$vector_{\mathit{dep}}$	16.57	45.08
ЕР09	_	32.2 ▼
EP10	_	39.9 ▼
TFP	_	45.94 ▼
DL	16.56	41.68
NMF _{context}	20.64**	47.60**
NMF_{dep}	22.49**	48.97**
NMF_{c+d}	22.59**	49.02**

Paraphrase induction

model	R_{best}	P ₁₀
vector _{dep}	8.78 1.06	30.21 7.59
$\begin{array}{c} \text{NMF}_{context} \\ \text{NMF}_{dep} \\ \text{NMF}_{c+d} \end{array}$	8.81 7.73 8.96	30.49 26.92 29.26

Conclusion

Beneficial to consider language as a multi-way co-occurrence problem

- Tensor space
 - novel model to investigate three-way (up to n-way) co-occurrence data
 - Possible to generalize over co-occurrence data with appropriate factorization models
 - Applicable to and beneficial for three-way selectional preference induction
- Pairwise matrices
 - 'makeshift' multi-way co-occurrence modeling
 - Useful when tensor approach is not feasible
 - Applicable to and beneficial for computation of word meaning in context

