Distributional similarity Introduction and implementation

Tim Van de Cruys

University of Cambridge

INCAS³ WORKSHOP databases and annotating Wednesday 10 August, 2011

Distributional similarity

- Most work on semantic similarity relies on the DISTRIBUTIONAL HYPOTHESIS (Harris 1954)
 - Take a word and its contexts:
 - tasty tnassiorc
 - greasy tnassiorc
 - *tnassiorc* with butter
 - *tnassiorc* for breakfast
- By looking at a word's context, one can infer its meaning

Distributional similarity

- Most work on semantic similarity relies on the DISTRIBUTIONAL HYPOTHESIS (Harris 1954)
 - Take a word and its contexts: \Rightarrow **FOOD**
 - tasty tnassiorc
 - greasy tnassiorc
 - tnassiorc with butter
 - *tnassiorc* for breakfast
- By looking at a word's context, one can infer its meaning

Distributional similarity

• Most work on semantic similarity relies on the DISTRIBUTIONAL HYPOTHESIS (Harris 1954)

- Take a word and its contexts:
 - tasty tnassiorc
 - greasy tnassiorc
 - tnassiorc with butter
 - tnassiorc for breakfast

• By looking at a word's context, one can infer its meaning

Introduction Theory Implementation Similarity Context Weighting Dimensionality reduction

Matrix

• Capture co-occurrence frequencies of two entities

1	
1	

・ロト ・回ト ・ヨト ・ヨト

Similarity Context Weighting Dimensionality reduction

• Capture co-occurrence frequencies of two entities

	rouge	délicieux	rapide	d'occasion
pomme	2	1	0	0
vin	2	2	0	0
voiture	1	0	1	2
camion	1	0	1	1

・ロト ・回ト ・ヨト ・ヨト

Similarity Context Weighting Dimensionality reduction

• Capture co-occurrence frequencies of two entities

	rouge	délicieux	rapide	d'occasion
pomme	7	9	0	0
vin	12	6	0	0
voiture	7	0	8	4
camion	2	0	3	4

・ロト ・回ト ・ヨト ・ヨト

Similarity Context Weighting Dimensionality reduction

• Capture co-occurrence frequencies of two entities

	rouge	délicieux	rapide	d'occasion
pomme	56	98	0	0
vin	44	34	0	0
voiture	23	0	31	39
camion	4	0	18	29

・ロト ・回ト ・ヨト ・ヨト

Similarity Context Weighting Dimensionality reduction

• Capture co-occurrence frequencies of two entities

	rouge	délicieux	rapide	d'occasion
pomme	728	592	1	0
vin	1035	437	0	2
voiture	392	0	487	370
camion	104	0	393	293

・ロト ・回ト ・ヨト ・ヨト

Similarity Context Weighting Dimensionality reduction

Similarity calculation

Cosine

•
$$cos(\overrightarrow{x}, \overrightarrow{y}) = \frac{\overrightarrow{x} \cdot \overrightarrow{y}}{|\overrightarrow{x}||\overrightarrow{y}|} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2}}$$

- Examples:
 - *cos*(*pomme*, *vin*) = .96
 - cos(pomme, voiture) = .42
- Other possibilities:
 - set-theoretic measures
 - Dice
 - Jaccard
 - probabilistic measures
 - Kullback-Leibler divergence
 - Jensen-Shannon divergence

<->
</>
</>
</>
</>
</l>

Similarity Context Weighting Dimensionality reduction

Different kinds of context

- Three different word space models based on context:
 - document-based model (nouns \times documents)
 - window-based model (nouns × context words)
 - syntax-based model (nouns \times dependency relations)
- Each model with plethora of parameters!
 - document size, window size, type of dependency relations
 - weighting function
 - $\bullet~\pm$ dimensionality reduction

A (1) > A (1) > A

Similarity Context Weighting Dimensionality reduction

Document-based model

- Plain word corpus
- Matrix contains the number of times a word appears in a particular document (web page, newspaper article, wikipedia entry, ...)
- Parameters:
 - document size: full document, paragraph, ...
 - weighting: TF/IDF, logarithmic, ...

	doc1	doc2	doc3	doc4
word1				
word2				
word3				
word4				

イロト イポト イヨト イヨト

Similarity Context Weighting Dimensionality reduction

Window-based model

- Plain word corpus
- Matrix contains the number of times a word appears in a particular window around a (small window, sentence, paragraph, ...)
- Parameters:
 - dependency relations: which ones?
 - weighting: TF/IDF, pointwise mutual information, logarithmic, ...

	word1	word2	word3	word4
word1				
word2				
word3				
word4				

イロト イポト イヨト イヨト

Syntax-based model

- Syntactically annotated (automatically parsed) corpus
- Matrix contains the number of times a word appears with a particular syntactic (dependency) feature (apple: direct object of *eat*, bomb: subject of *explode*, ...)
- Parameters:
 - window size: n words (left/right), sentence, paragraph ...
 - weighting: TF/IDF, pointwise mutual information, logarithmic, ...

	dep1	dep2	dep3	dep4
word1				
word2				
word3				
word4				

イロト イヨト イヨト イヨト

Similarity Context Weighting Dimensionality reduction

Different kinds of semantic similarity

- 'tight', synonym-like similarity: (near-)synonymous or (co-)hyponymous
- **loosely related, topical similarity**: more loose relationships, such as association and meronymy

イロト イヨト イヨト イヨト

Similarity Context Weighting Dimensionality reduction

Different kinds of semantic similarity

- 'tight', synonym-like similarity: (near-)synonymous or (co-)hyponymous
- loosely related, topical similarity: more loose relationships, such as association and meronymy

Example

- médecin 'doctor': docteur 'doctor', médecin de famille 'family doctor', chirurgien 'surgeon', spécialiste 'specialist', dermatologue 'dermatologist', gynécologue 'gynaecologist'
- médecin 'doctor': malade 'patient', maladie 'disease', diagnostic 'diagnosis, traitement 'treatment, hôpital 'hospital', stéthoscope 'stethoscope'

- ∢ ⊒ →

Similarity Context Weighting Dimensionality reduction

Relation context – similarity

- Different context leads to different kind of similarity
- Syntax, small window \leftrightarrow large window, documents
- The former models induce tight, synonymous similarity
- The latter models induce topical relatedness

Similarity Context Weighting Dimensionality reduction

Relation context – similarity

- Different context leads to different kind of similarity
- Syntax, small window \leftrightarrow large window, documents
- The former models induce tight, synonymous similarity
- The latter models induce topical relatedness

Evaluation

- Syntax-based model scores best when evaluated according to Wordnet similarity measures (CORNETTO)
- Large window and document-based do not score well on Wordnet similarity, but do score on Wordnet domain evaluation

Similarity Context Weighting Dimensionality reduction

Weighting

- How salient is a word within a document/window/dependency relation?
- de voetballer is \leftrightarrow de voetballer scoort
- Local vs. global weighting:
 - local: only based on information in matrix cell (e.g. logarithmic weighting)
 - global: based on global instances/feature frequencies (probabilities)

イロト イヨト イヨト イヨト

Similarity Context Weighting Dimensionality reduction

local weighting: logarithmic weighting

•
$$f_{i,j} = 1 + log(f_{i,j})$$

• smooths high frequency data

イロト イヨト イヨト イヨト

Similarity Context Weighting Dimensionality reduction

global weighting: pointwise mutual information

•
$$pmi(i,j) = log(\frac{p(i,j)}{p(i)p(j)})$$

- Compare joint probability p(i, j) with marginal probabilities p(i) and p(j)
- higher value if *i* and *j* occur together more often than one would expect given their independence

イロト イヨト イヨト イヨト

Similarity Context Weighting Dimensionality reduction

Dimensionality reduction

- reduce large number of features to limited number of 'semantic dimensions'
- useful for topical similarity (dimensions represent topics)
- latent semantic analysis, latent dirichlet allocation, non-negative matrix factorization

Preprocessing Determination of instances and features Matrix construction Similarity computations

・ロト ・回ト ・ヨト

Python framework

Preprocessing

- ② Determination of instances and features
- Matrix construction
- ④ Similarity computations

Preprocessing Determination of instances and features Matrix construction Similarity computations

・ロト ・回ト ・ヨト

Preprocessing

- Convert corpus to proper format/usable form
 - convert to raw text
 - syntactic parsing
 - extraction of dependency triples
 - storage: plain text or MySQL database

Preprocessing Determination of instances and features Matrix construction Similarity computations

Image: A math a math

-

Read in corpus

- Parent Corpusreader class
- Child classes for specific corpus formats

Preprocessing Determination of instances and features Matrix construction Similarity computations

Determination of instances and features

- instances (words) and features (window-based words, dependency features) need to be determined beforehand for proper matrix construction
 - 'dry run' on corpus
 - or initial sort for most frequent instances/features
 - or complete construction with pruning step

Preprocessing Determination of instances and features **Matrix construction** Similarity computations

Matrix construction

- Matrices tend to be very sparse (dependency-based: <1% zeros)
- sparse matrix implementation: lists-of-hashes (lists-of-dicts)
- word strings mapped to integers (with translation dict)
- alternative: scientific libraries (Numpy/Scipy)

Preprocessing Determination of instances and features Matrix construction Similarity computations

Matrix construction

- Parent Matrix class with
 - initial determination
 - fill options
 - weighting functions
 - normalization
- Child classes for specific models (document-based, window-based, dependency-based)

Preprocessing Determination of instances and features Matrix construction Similarity computations

イロト イヨト イヨト イヨト

Similarity computations

- different similarity functions operating on vectors of matrix (cosine, KL-divergence, ...)
- functions of Matrix itself
- Numpy/Scipy