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Semantic similarity

Most work on semantic similarity relies on the
distributional hypothesis (Harris 1954)

Take a word and its contexts:

tasty klemenrak

sour klemenrak

a bottle of klemenrak

klemenrak gone bad

By looking at a word’s context, one can infer its meaning

Computationally: vector space model
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Semantic similarity

Most work on semantic similarity relies on the
distributional hypothesis (Harris 1954)

Take a word and its contexts:

tasty klemenrak

sour klemenrak

a bottle of klemenrak

klemenrak gone bad

⇒ FOOD/DRINK

By looking at a word’s context, one can infer its meaning

Computationally: vector space model
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Two kinds of context

1 ‘Bag of words’ context

a window around the word is used as context
e.g. a fixed numbers of words, the paragraph in which a word
appears, . . .
often used with some form of dimensionality reduction
‘topical’ similarity

2 Syntactic context

a corpus is parsed, dependency triples are extracted
e.g. <apple, obj, eat>, <apple, adj, red>

typically does not use any form of dimensionality reduction
tighter, synonym-like similarity
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Ambiguity

Problem: ambiguity

Compare:
a trendy bar

↔ an iron bar

↔ today’s air pressure: 1.013 bar

Different meanings, but they are considered the same entity by
a naive algorithm

Main research question: can ‘bag of words’ context and
syntactic context be combined to differentiate between various
senses of a word?

Tim Van de Cruys An Extended nmf Algorithm for WSD



Introduction
Methodology

Results
Conclusion

Non-Negative Matrix Factorization
Extending nmf

Sense subtraction
Clustering Extension

Technique

Given a non-negative matrix V, find non-negative matrix
factors W and H such that:

Vnxm ≈ WnxrHrxm (1)

Choosing r ≪ n,m reduces data

Constraint on factorization: all values in three matrices need
to be non-negative values (≥ 0)

Constraint brings about a parts-based representation: only
additive, no subtractive relations are allowed
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Results

Context vectors (5k nouns × 2k co-occurring nouns)

nmf is able to capture ‘semantic’ dimensions

Examples:

bus ‘bus’, taxi ‘taxi’, trein ‘train’, halte ‘stop’, reiziger

‘traveler’, perron ‘platform’, tram ‘tram’, station ‘station’,
chauffeur ‘driver’, passagier ‘passenger’
bouillon ‘broth’, slagroom ‘cream’, ui ‘onion’, eierdooier ‘egg
yolk’, laurierblad ‘bay leaf’, zout ‘salt’, deciliter ‘decilitre’,
boter ‘butter’, bleekselderij ‘celery’, saus ‘sauce’
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Methodology

Goal: classification of nouns according to both ‘bag of words’
context and syntactic context

⇒ Construct three matrices capturing co-occurrence
frequencies for each mode

nouns cross-classified by dependency relations
nouns cross-classified by (bag of words) context words
dependency relations cross-classified by context words

⇒ Apply nmf to matrices, but interleave the process

Result of former factorization is used to initialize factorization
of the next one
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Graphical Representation
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Sense subtraction

‘switch off’ one dimension of an ambiguous word to reveal
other possible senses

Matrix H gives the importance of each dependency relation
given a dimension

‘subtract’ dependency relations that are responsible for a
given dimension from the original noun vector

−→v new = −→v orig (
−→
1 −

−→
h dim)

each dependency relation is multiplied by a scaling factor,
according to the load of the feature on the subtracted
dimensions
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Combination with clustering

A simple clustering algorithm (k-means) assigns ambiguous
nouns to its predominant sense

Centroid of the cluster is fold into topic model

The dimensions that define the centroid are subtracted from
the ambiguous noun vector

Adapted noun vector is fed to the clustering algorithm again
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Experimental Design

Approach applied to Dutch, using Twente Nieuws Corpus (±
500M words)

Corpus parsed with Dutch dependency parser alpino

three matrices constructed with:

5k nouns × 40k dependency relations
5k nouns × 2k context words
40k dependency relations × 2k context words

Factorization to 50 dimensions
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Example dimension: transport

1 nouns: auto ‘car’, wagen ‘car’, tram ‘tram’, motor

‘motorbike’, bus ‘bus’, metro ‘subway’, automobilist ‘driver’,
trein ‘trein’, stuur ‘steering wheel’, chauffeur ‘driver’

2 context words: auto ‘car’, trein ‘train’, motor ‘motorbike’,
bus ‘bus’, rij ‘drive’, chauffeur ‘driver’, fiets ‘bike’, reiziger

‘reiziger’, passagier ‘passenger’, vervoer ‘transport’

3 dependency relations: viertrapsadj ‘four pedal’,
verplaats metobj ‘move with’, toeteradj ‘honk’,
tank in houdobj [parsing error], tanksubj ‘refuel’, tankobj

‘refuel’, rij voorbijsubj ‘pass by’, rij voorbijadj ‘pass by’,
rij afsubj ‘drive off’, peperduuradj ‘very expensive’
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Pop: most similar words

pop music ↔ doll

1 pop, rock, jazz, meubilair ‘furniture’, popmuziek ‘pop music’,
heks ‘witch’, speelgoed ‘toy’, kast ‘cupboard’, servies ‘[tea]
service’, vraagteken ‘question mark’

2 pop, meubilair ‘furniture’, speelgoed ‘toy’, kast ‘cupboard’,
servies ‘[tea] service’, heks ‘witch’, vraagteken ‘question mark’
sieraad ‘jewel’, sculptuur ‘sculpture’, schoen ‘shoe’

3 pop, rock, jazz, popmuziek ‘pop music’, heks ‘witch’, danseres

‘dancer’, servies ‘[tea] service’, kopje ‘cup’, house ‘house
music’, aap ‘monkey’
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Barcelona: most similar words

Spanish city ↔ Spanish football club

1 Barcelona, Arsenal, Inter, Juventus, Vitesse, Milaan ‘Milan’,
Madrid, Parijs ‘Paris’, Wenen ‘Vienna’, München ‘Munich’

2 Barcelona, Milaan ‘Milan’, München ‘Munich’, Wenen

‘Vienna’, Madrid, Parijs ‘Paris’, Bonn, Praag ‘Prague’, Berlijn

‘Berlin’, Londen ‘London’

3 Barcelona, Arsenal, Inter, Juventus, Vitesse, Parma,
Anderlecht, PSV, Feyenoord, Ajax
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Clustering example: werk

1 werk ‘work’, beeld ‘image’, foto ‘photo’, schilderij ‘painting’, tekening

‘drawing’, doek ‘canvas’, installatie ‘installation’, afbeelding ‘picture’,

sculptuur ‘sculpture’, prent ‘picture’, illustratie ‘illustration’, handschrift

‘manuscript’, grafiek ‘print’, aquarel ‘aquarelle’, maquette ‘scale-model’,

collage ‘collage’, ets ‘etching’

2 werk ‘work’, boek ‘book’, titel ‘title’, roman ‘novel’, boekje ‘booklet’,

debuut ‘debut’, biografie ‘biography’, bundel ‘collection’, toneelstuk

‘play’, bestseller ‘bestseller’, kinderboek ‘child book’, autobiografie

‘autobiography’, novelle ‘short story’,

3 werk ‘work’, voorziening ‘service’, arbeid ‘labour’, opvoeding ‘education’,

kinderopvang ‘child care’, scholing ‘education’, huisvesting ‘housing’,

faciliteit ‘facility’, accommodatie ‘acommodation’, arbeidsomstandigheid

‘working condition’
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Methodology

Comparison to EuroWordNet senses

using Wu & Palmer’s Wordnet similarity measure

Calculate precision and recall

Precision: Percentage of correct clusters to which senses are
assigned
Recall: Percentage of senses in EuroWordnet that have a
corresponding cluster
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Results

threshold θ

.40 (%) .50 (%) .60 (%)

kmeansnmf prec. 78.97 69.18 55.16
rec. 63.90 55.95 44.77

cbc prec. 44.94 38.13 29.74
rec. 69.61 60.00 48.00

kmeansorig prec. 86.13 74.99 58.97
rec. 60.23 52.45 41.80
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Conclusion

Combining bag of words data and syntactic data is useful

bag of words data (factorized with nmf) puts its finger on
topical dimensions
syntactic data is particularly good at finding similar words
a clustering approach allows one to determine which topical
dimension(s) are responsible for a certain sense
and adapt the (syntactic) feature vector of the noun
accordingly
subtracting the more dominant sense to discover less dominant
senses

Algorithm scores better with regard to precision; lower with
regard to recall
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Future Work

Evaluate the method with other evaluation frameworks (focus
on ambiguous nouns, Cornetto Database)

Work out proper probabilistic framework for ‘subtraction’ of
dimensions

Use the results of the method to learn selectional preferences,
in order to improve parser performance
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